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Abstract  
Rock properties play a crucial role in mining, 

geotechnical engineering and various engineering 

projects. P-wave velocity helps in determining the 

quality and stability of rock masses, essential for tunnel 

excavation, slope stability and mining operations. P-

wave velocity also provides critical input for designing 

foundations for dams, bridges and other rock 

structures. Accurate determination of P-wave velocity 

relies on high-quality samples. However, challenges 

such as preparation, cost and time constraints have 

prompted a growing reliance on computational 

methods for its prediction. Previous investigations 

predominantly leaned on laboratory-based tests and 

indirect methodologies for predicting rock properties 

including P-wave velocity.  

 

In contrast, this study introduces an innovative 

technique for predicting wave velocity (Vp) of 

sedimentary rocks, particularly limestone using ball 

mill grinding characteristics throughout the grinding 

procedure, an unconventional yet effective approach. A 

hybrid random forest model optimized with dolphin 

swarm algorithm was developed to predict Vp from 

grinding characteristics. The performance of the model 

in training and testing phases was assessed based on 

determination coefficients (R2), root mean-squared 

error (RMSE) and variance account for (VAF) which 

are 0.984, 96.204 m/s and 98.25% in training and 

0.973, 102.32 m/s and 97.63% in testing phase 

respectively.  
 

Keywords: Ball mill, Grinding characteristics, P-wave 

velocity, Prediction models 

 

Introduction 
Rock engineers traditionally estimate the physico-

mechanical properties of rocks through labor-intensive and 

time-consuming processes involving coring and laboratory 

tests. However, these methods have limitations in terms of 

efficiency and cost-effectiveness. The P-wave velocity of 

rocks plays a significant role in rock mechanics. This 
velocity is influenced by various factors including the 

physico-mechanical properties of rocks25.  
 

* Author for Correspondence 

The P-wave velocity can provide insights into the 

anisotropic behavior of rocks, which is the variation in 

properties along different directions24.  Furthermore, the P-

wave velocity has practical applications in various fields. In 

geotechnical engineering, it can be used to assess the quality 

of rock masses and to predict subsurface rock quality22.  

 

In seismic exploration, the P-wave velocity is used to 

perform amplitude variation with offset analysis and search 

for oil reservoirs7. In acoustic logging, the P-wave velocity 

is utilized to calculate rock porosity, mechanical parameters 

(such as Young's modulus and Poisson ratio) and to calibrate 

seismic data4. However, obtaining accurate samples from 

weak, weathered and highly fractured rocks for laboratory 

testing can be challenging18. This may lead to evaluations 

based on limited high-grade samples, potentially affecting 

the accuracy of results. To address these constraints, 

researchers are exploring experimental predictive models to 

enhance rock characterization.  

 

Many studies have utilized index-based tests to predict rock 

properties, establishing correlations between specific indices 

and rock properties to predict UCS from point load values10, 

slake durability index27, block punch index12 , basic rock 

index properties19 and using P-wave velocity to predict 

different rock properties13. Several researchers have 

investigated the use of indirect approaches for predicting 

seismic wave velocities. Hadi and Nygaard8 developed a 

reliable prediction tool for estimating shear wave velocity 

from P-wave velocity measurable from well logs using both 

regression and artificial neural network (ANN).  

 

The ANN model demonstrated superior performance with 

R2 = 0.96 and lower mean square error of 0.0011. The study 

also highlights that the P-wave velocity outperforms bulk 

density in predicting shear wave velocity and combining 

these parameters enhances the prediction. Karakul and 

Ulusay14 established relationship between Vp and strength 

properties such as uniaxial compressive strength and tensile 

strength of different rock types under varying saturation 

levels. Multivariate models were developed to predict the 

rock properties by incorporating saturation degree and 

effective clay content. Kasab and Weller15 investigated the 

behavior of P-wave and S-wave velocities in porous 

sandstone. The results of the study showed that P-wave 

velocity was higher in saturated samples, averaging to 2950 

m/s compared to 2766 m/s in dry samples.  

 



     Disaster Advances                                                                                                                            Vol. 18 (5) May (2025) 
 

https://doi.org/10.25303/185da0109           2 

The study established equations to predict P-wave and S-

wave based on their corresponding dry sample velocities. 

Kim et al17 explored the use of machine learning models 

such as Gradient Boosting, Random Forest and Artificial 

Neural Network to predict compression (Vp) and shear (Vs) 

velocities using borehole data from seismograph networks 

with input parameters such as density, N-value, slope angle, 

elevation, geology, soil/rock type and site coordinates. The 

results of the study showed that gradient boosting 

outperformed other methods for both Vp and Vs predictions 

across both the networks. Basarir and Dincer5 developed 

predictive models utilizing linear and non-linear regression 

techniques alongside Adaptive Neuro Fuzzy Inference 

System (ANFIS) for estimating P-wave velocity of rock 

masses.  

 

The predictors dataset included the drilling parameters 

compiled from field investigations conducted at 13 open pit 

lignite mines. The ANFIS model demonstrated superior 

predictive performance, indicating its potential for reliable 

estimation of Vp in rock masses. Najibi and Asef20 

investigated on prediction of Vp and Vs velocities using rock 

density, elastic modulus measured at unconfined 

atmospheric pressure.  The analysis included 285 points 

from various locations. The predicted wave velocities 

showed an accuracy of 2-3% compared to the measured 

values. This approach is crucial for understanding the rock 

behavior under deep-well conditions, with applications in 

geophysical property prediction, wellbore stability and in-

situ stress analysis. Altindag1 correlated several physico-

mechanical properties with P-wave velocity of sedimentary 

rocks. A total of 97 samples were analyzed statistically.  

 

The multiple regression analysis based on P-wave velocity 

resulted in empirical equations with high correlation 

coefficients tailored for rock engineering applications. The 

derived equations were compared to those reported in earlier 

studies for validation and performance assessment. Bery and 

Saad6 demonstrated the potential of P-wave seismic 

velocities for cost effective subsurface material 

characterization, reducing investigation costs while 

improving the understanding of soil and rock properties in 

tropical regions. The study findings include empirical 

correlations for tropical environments such as Vp = 

23.605(N) – 160.43 (with R2 = 93.15%) and Vp = 

21.951(RQD) + 0.1368 (with R2 = 83.77%). Additionally, 

the squared ratio of field to laboratory P-wave velocities 

approximates to RQD, providing a practical method for 

estimating rock quality.  

 

There are some studies which used grinding parameters to 

correlate with the dimensional properties of material being 

ground in grind mills. Avinash et al4 and Petrakis and 

Komnitsas21 investigated the use of grinding parameters of 

rocks to correlate and predict the rock properties. Aras et al2 
successfully used ANNs to predict Bond’s work index from 

rock properties, demonstrating the potential of machine 

learning approaches to capture the complex behavior during 

ball mill grinding. Umucu et al26 used neural networks to 

evaluate the grinding process illustrating the importance of 

material properties.  

 

Asghari et al3 investigated the relationship among ore 

features, operating variables and other product shape 

properties in an industrial semi-autogenous grinding (SAG) 

mill, further illustrating the interdependence of various 

factors affecting the grinding process and the potential for 

using this data to infer rock properties. An investigation was 

carried out by Kekec et al16 to study the effect of textural 

properties of rocks on their crushing and grinding 

characteristics, highlighting the importance of considering 

rock properties beyond just strength and hardness when 

analyzing the grinding behavior.  

 

In the domain of rock properties prediction, there is a notable 

gap in the literature regarding the utilization of grinding 

characteristics of mills as an indirect approach to correlate 

with rock properties including P-wave velocity. Recently, 

advanced algorithms such as metaheuristic algorithms, 

stacking algorithms, hybrid algorithms etc. have gained a 

momentum in the recent past in rock engineering for 

predictive modelling.  

 

Consequently, a study is proposed which uses the grinding 

characteristics of ball mill such as feed input, grinding media 

(number of balls), grinding media weight, grind duration, 

mill volume occupied by rock charge, mill volume occupied 

by ball charge, interstitial filling ratio, grinding duration, 

charge ratio, extent of mill filling and  the representative 

particle sizes at which 10%, 50% and 90% of the particles 

by weight are finer as predictor variables to predict P-wave 

velocity of sedimentary rocks such as limestone, using a 

hybridized random forest optimized with bio-inspired 

metaheuristic dolphin-swarm algorithm.  

 

Model Establishment  
Rocks often display non-linear behavior under various stress 

and their properties can vary due to anisotropic nature. 

Predictive models capture these complexities and provide 

more accurate estimation of rock properties. A brief 

overview of model development of hybrid random forest 

model optimized with dolphin swarm algorithm for 

regression is discussed as follows:     

 

Random Forest (RF) model: Random forests, also known 

as random decision forests, represent ensemble learning 

techniques used for a variety of tasks such as classification 

and regression. These methods function by creating a 

collection of decision trees randomly and subsequently 

estimate the dominant class in classification or the average 

value in regression based on the outputs from individual 

trees.  

 

These methods are generally considered improvements over 

traditional bootstrap regression techniques. In Random 

Forest algorithm, the feature space undergoes segmentation 



     Disaster Advances                                                                                                                            Vol. 18 (5) May (2025) 
 

https://doi.org/10.25303/185da0109           3 

through various partitioning criteria. Initially, the algorithm 

identifies the corresponding region of an observed data 

point.  

 

Subsequently, predictions are made based on either the mean 

or mode of all the data within that region. Regression trees 

offer the advantage of being able to capture complex 

relationships within the data and accommodate non-linear 

associations between predictors and targets due to their 

adaptive decision rules. However, when grown to maximum 

depth, they run the risk of overfitting the data, as the tree 

becomes overly complex11.  

 
Dolphin swarm optimization (DSO): The Dolphin swarm 

algorithm is a nature-inspired optimizing technique. It 

mimics the intelligent behavior of dolphins in their hunting 

and social interactions. This algorithm is used to solve 

complex optimization problems by simulating the 

cooperative hunting strategy of dolphins. The key steps 

involved in the Dolphin Swarm Optimization Algorithm are: 

 

a) Initialization: Generate an initial population of 

dolphins randomly within the search space. Each 

dolphin represents a possible solution to the 

optimization problem. 

b) Evaluation: Evaluate the fitness of each dolphin based 

on the objective function. The objective function 

measures the best solution. 

c) Update Positions: Dolphins update their positions 

based on their own experiences and the best positions of 

their neighbors. This involves both exploitation (local 

search) and exploration (global search).  

d) Breaching and Echolocation: Dolphins use a 

breaching mechanism to jump out of the water and 

search for prey. Echolocation helps dolphins to detect 

the location of prey and navigate towards it.  

e) Swarm Communication: Dolphins communicate with 

each other to share information about the best positions. 

This helps in finding the optimal solution collectively.  

f) Convergence: The algorithm iterates through the above 

steps until a stopping criterion is met (e.g. a maximum 

number of iterations or a satisfactory fitness level). 

 

The general flow diagram for the implementation of hybrid 

random forest algorithm optimized with dolphin swarm 

algorithm is illustrated in Figure 1. 

 

Material and Methods  
Field visits were conducted to collect limestone samples 

from various mines located in different geographical regions 

in India. These samples were then transported to the 

laboratory. Limestone primarily comprises of calcium 

carbonate (CaCO3) in the form of the mineral calcite. 

Additionally, it may contain minerals like quartz, feldspar, 

clay minerals, pyrite, siderite etc. Texture-wise, limestone 

exhibits a fine-grained or crystalline structure. Rock samples 

collected during field visits were prepared and tested in the 

laboratory for their properties as per ISRM suggested 

methods.

 

 
Figure 1: Proposed hybrid random forest regressor optimized with dolphin swarm algorithm for prediction  

of P-wave velocity 
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In this study a total of 298 limestone core samples with 

standard NX size were tested to determine the P-wave 

velocity (Vp). These samples have a diameter of 54 mm, with 

a length-to-diameter ratio of 2.5 for rock properties 

determination. Vp is determined through direct transmission 

using a portable Cronosonic ultrasonic pulse testing device. 

This device accurately measures the time taken for 

ultrasound pulses to propagate, with a precision of 0.1 μs. 

The transducers used were operating at 47.2 kHz. The Vp 

tests were conducted perpendicular to the observed layers 

and the set-up is shown in figure 1. The P-wave velocities of 

the examined rocks vary within the range of 2043.71-

6697.54 m/s. The laboratory test results for limestone 

samples are summarized in table 1. The mean P-wave 

velocity was found to be 4386.365 m/s with a standard 

deviation of 1054.7 m/s. 

 

 

Ball mill grinding tests: In this investigation, rock 

specimens were initially fractured to an approximate size of 

50-60 mm. Subsequently, the fragmented material 

underwent sieving to achieve a size range of –10+6.3 mm. 

The sieved rock charge obtained serves as the input feed for 

the ball mill. Grinding experiments were carried out using a 

traditional laboratory-scale ball mill with a total volume of 

0.0865 m3, as illustrated in figure 2. The mill operates at a 

speed of 55 rpm, which is 70% of its critical speed. To 

facilitate the grinding process, an adequate amount of 

grinding medium (high carbon high chrome steel balls 

having density = 7.35 g/cc) is added to the ball mill drum. 

For the dry grinding experiments, the test sample's volume 

is selected such that the combined volume of the sample and 

grinding media is less than 40% of the total mill volume. The 

grinding characteristics of the ball mill for limestone 

samples are shown in table 2. 

 
Figure 2: Laboratory determination of P-wave velocity 

 

Table 1 

Descriptive statistical test results of P-wave velocity of limestone samples 

Variable N Mean Minimum Maximum StDev Median Range Skewness Kurtosis 

P-wave 

velocity, m/s 
298 4386.4 2043.7 6697.5 1054.7 4333.1 4653.8 -0.07 -0.80 

 

 
Figure 3: A view of laboratory ball mill 
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Table 2 

Grinding characteristics of ball mill with variations 

Operating Parameters of Ball Mill Parametric Variations 

Feed Input (FI), g 1000, 1250,1500,1750,2000 

Number of balls  125,135,140,145,155 

Grinding Media Weight (GMW), g 15924, 18789, 20222, 23097, 25972 

Grind time (τ), min 5, 7.5,10, 12.5,15 

Mill volume occupied by sample charge (Jr), % 0.62 – 1.26 

Mill volume occupied by ball charge (Jb), % 3.913, 4.617, 4.969, 5.676, 6.382 

Interstitial filling ratio (U) 0.25 – 0.67 

Charge ratio (υ) 15.924, 15.031, 13.481, 13.198, 12.986 

Mill filling (ψ), % 4.71 – 10.88 

Representative Particle sizes Size Ranges 

D10 (µm) 36.34 – 85.04 

D50 (µm) 125.71 – 325.48 

D90 (µm) 3790.7 – 5434.3  

 

Certain parameters of the ball mill are estimated using the 

following expressions shown in eqs. 1 to 5: 

 

Jr = 

m𝑟
ρ𝑟

Vmill
*

100

1 - ε
                 (1) 

 

Jb = 

m𝑏
ρ𝑏

Vmill
*

100

1 - ε
                 (2) 

 

ω = 
J𝑟

J𝑏
∗

1

 ε
                      (3) 

 

υ= 
m𝑏

m𝑟
                  (4) 

 

ψ = 
(

m𝑟
ρ𝑟

+
m𝑏
ρ𝑏

)

Vmill
∗

100

1 - ε
                (5) 

 

where mr is the mass of rock charge, mb is the mass of balls 

charge, ρr, is density of rock charge, ρb is density of ball 

charge (ρb = 7.65 g/cc), Vmill is the mill volume and ε is bed 

porosity for ball mill (30-40%). 

 

Results and Discussion 
Correlation between P-wave velocity with grinding 

characteristics of ball mill is discussed. Sensitivity analysis 

is performed to identify significant predictors influencing 

the target variable P-wave velocity.  

 
Prediction model for P-wave velocity: The performance of 

a ball mill in various industrial processes relies on a 

combination of its strength properties and operating 

parameters. Understanding the correlation between these 

factors is crucial for optimizing the performance of the mills, 

enhancing production output and achieving desired product 

quality23. In predictive modelling, especially regression task, 

the accuracy and robustness of the models are paramount. 

Traditional Random Forest (RF) models, while powerful, 

mostly rely on default or heuristic hyperparameter settings 

that may not yield optimal performance for complex 

datasets. To address this limitation, optimization techniques 

such as dolphin swarm optimizer (DSO) are increasingly 

integrated with machine learning models to fine-tune the 

hyperparameters, forming a hybrid approach.  

 

The Hybrid Random Forest Dolphin Swarm-Optimizer (RF-

DSO) method leverages the strength of both RF and DSO to 

improve the predictive accuracy and model generalization. 

The input data with which the RF-DSO model is trained, 

consists of grinding characteristics of ball mill as predictors. 

The hyperparameters were tuned for the optimal conditions 

that yield in higher accuracy of random forest regression 

models to predict P-wave velocity. For model development, 

the dataset was split into two parts: 238 samples (80% of the 

data) for training, 60 samples (20% of the data) for testing. 

The comparison between the predicted and actual p-wave 

velocity in both training and testing phase is shown in figure 

4. 

 

Performance evaluation of prediction models: One of the 

crucial steps in the development of a prediction model is the 

assessment of model based on performance indices reporting 

its validity for prediction. A few commonly used metrics for 

evaluating the performance of RF-DSO models include 

coefficient of determination (R2), root mean square error 

(RMSE) and variance accounted for (VAF) and they are 

shown in eq. (6) to eq. (8). R2 quantifies the strength and 

direction of linear relationship between the two variables. 

RMSE reflects the standard deviation of residuals. VAF 

measures the proportion of error variance relative to the 

variance in the observed data.   

 

According to Hair et al9, a VAF > 80% indicates full 

mediation, between 20% and 80% suggests partial mediation 

and < 20% implies no mediation. The proposed model is 

evaluated based on few statistical performance metrics such 

as Coefficient of Determination (R2), Root Mean-Squared 

Error (RMSE) and Variance Account For (VAF) in both 

training and testing segments.  

 

𝑅2 = 1 − 
∑ (𝑦𝑎−𝑦𝑝)2

𝑖

∑ (𝑦𝑎−𝑦𝑚)2
𝑖

                (6) 
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RMSE =  √
1

N
∑ (yp − ya)2N

i=1                  (7) 

VAF = (1 −
𝑉𝑎𝑟(𝑦𝑎−𝑦𝑝)

𝑉𝑎𝑟(𝑦𝑎)
) ∗ 100                (8) 

 

where N represents the number of samples, ya represents the 

true value or actual value, yp represents the predicted values 

and ym represents mean value.  

 

In figures 5, 6 and 7, training data an R2 of 0.991, RMSE of 

96.209 m/s and VAF of 99.16% are observed. Similarly, for 

testing phase, an R2 of 0.973, RMSE of 112.209 m/s and 

VAF of 97.32% is noted. 

 

Influence of critical grinding characteristics of ball mill 

on P-wave velocity:  The impact of different grinding 

characteristics variables is assessed based on sensitivity 

analysis. This method is crucial for understanding how the 

model results are affected by different factors, enabling the 

identification of important factors that affect the output 

variables.

 

 
Figure 4: Predicted and actual P-wave velocity in both training and testing phase 

 

 
Figure 5: Performance comparison of RF-DSO model based on R2 
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Figure 6:  Performance comparison of RF-DSO model based on RMSE 

 

 
Figure 7: Performance comparison of RF-DSO model based on VAF 

 

 
Figure 8: Impact of grinding characteristics of ball mill on P-wave velocity 
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By methodically altering the input parameters within a 

specified range and analyzing the resulting changes in the 

outputs, sensitivity analysis quantifies the effect of each 

input variable. In this study, the sensitivity analysis is 

performed using the cosine amplitude method, which 

quantifies the sensitivity by measuring the angular similarity 

between the input and output vectors. This allows for an 

efficient evaluation of the relationships between the input 

parameters and model output.  

 

As depicted in figure 8, apart from D10 and D50 variables, 

most of the grinding characteristics have shown to influence 

the P-wave velocity as the importance measure is more than 

0.9. This analysis provides valuable insights into the relative 

importance of each parameter and highlights the critical 

factors that affect the compressive strength of rocks. 

 

Conclusion 
Numerous researchers have investigated into various 

indirect methodologies for the estimation of rock properties, 

particularly when the direct assessment of these properties 

in rock engineering projects proves to be intricate and time-

consuming. This study introduces an innovative approach 

that utilizes the grinding characteristics of a ball mill to 

predict P-wave velocity. The distinctive advantage of this 

method over other indirect techniques lies in its capacity to 

offer precise and direct insights into the behavior of rocks 

under diverse conditions. This study introduces a hybrid 

random forest model enhanced with the dolphin swarm 

algorithm to predict P-wave velocity from grinding 

characteristics.  

 

The metrics of performance of the model indicate a high 

degree of accuracy, indicating a robustness and reliability of 

the model. It may be noted that the rock properties are also 

dependent on the mineralogical and petrographical features 

of charge involved in grinding. Hence, a detailed 

investigation may be carried out as a scope for future work 

to explore the intensive relationship between the grinding 

characteristics of ball mill and rock properties. 
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